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Purpose: To develop and validate a deep learning-based artificial intelligence (AI) model for automated measurement
of lumbar lordosis (LL) angles from whole spine lateral radiographs.

Materials and Methods: A total of 888 lateral spine X-rays (2019-2021) were retrospectively collected and annotated
with four anatomical keypoints (L1 and S1 vertebral landmarks). An Al model using Detectron2 with a Keypoint
R-CNN and ResNeXt-101 backbone was trained with data augmentation. Performance was evaluated on 50 test
images, comparing Al results to manual annotations by two orthopedic surgeons using intraclass correlation
coefficient (ICC), Pearson’s correlation, and Bland-Altman analysis.

Results: The model achieved an average precision of 71.63 for bounding boxes and 86.61 for keypoints. ICCs between
Al and human raters ranged from 0.918 to 0.962. Pearson correlation coefficients were r=0.849 and r=0.903. Bland-
Altman analysis showed minor underestimation biases (-3.42° and -4.28°) with acceptable agreement.

Conclusions: The Al model showed excellent agreement with expert measurements and high reliability in LL angle
assessment. Despite a slight underestimation, it offers a scalable, consistent tool for clinical use. Further studies
should evaluate generalizability and interpretability in broader settings.
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Introduction

Lumbar lordosis (LL), the inward curvature of the lower
spine, is a key anatomical feature that contributes to proper
posture, weight distribution, and spinal balance. Devia-
tions from the normal curvature—either hyperlordosis or
hypolordosis—are closely associated with various spinal pa-
thologies such as chronic low back pain, degenerative disc
disease, and sagittal imbalance."™ Accurate and consistent
measurement of LL is thus critical for both diagnostic and
therapeutic decision-making in clinical practice. Tradition-
ally, clinicians manually measured the lordotic angle on
lateral spinal radiographs, which can be time-intensive and
subject to inter- and intra-observer variability.”

Recent developments in artificial intelligence (AI), par-
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ticularly in deep learning and convolutional neural networks
(CNNs), have significantly advanced the field of medical
image analysis. Al-based models have shown high accuracy
in detecting anatomical landmarks, segmenting spinal struc-
tures, and even classifying pathological conditions in radio-
graphic images.” In this study, we present a deep learning-
based AI model specifically designed to measure LL angles
automatically from whole spine lateral radiographs. By le-

veraging annotated datasets and robust model architectures,
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our approach aims to improve measurement consistency,
reduce clinician workload, and enable scalable spinal angle

measurements in both clinical and research settings.

Materials and Methods

1. Data Collection

This study was conducted with approval from the Insti-
tutional Review Board (IRB) of the Catholic Kwandong
University International St. Mary’s Hospital (IS20RISI0015).
A total of 2,397 X-ray images were retrospectively collected
from the hospital’s Picture Archiving and Communication
System (PACS) from 2019 to 2021. Among them, 888 high-
quality images were selected based on the following inclu-
sion criteria: absence of image noise and clear visualization
of skeletal structures.

The dataset was divided into training, validation, and test
sets, with the gender distribution balanced as closely as pos-
sible to a 1:1 ratio across all sets. All data were anonymized
before use in research, with all personally identifiable infor-

mation removed.

2. Annotation

Annotation guidelines were developed by an orthopedic
surgeon with over 10 years of clinical experience. The actual
labeling was carried out by a registered nurse with more
than 5 years of clinical experience, following training based
on the aforementioned guidelines and conducted under the

supervision of the orthopedic surgeon.
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A total of four anatomical keypoints were defined: the
superior-anterior and superior-posterior positions of the L1
and S1 vertebral bodies. Bounding boxes were annotated
to include major skeletal structures such as the sacrum
and femoral heads. All annotations were created using the
COCO-annotator tool, and 50% of the annotations were
reviewed by the orthopedic surgeon to ensure labeling ac-
curacy. Final labels were saved in COCO format (JSON).

3. Al Model Training

We utilized the Detectron2 framework developed by Face-
book AI Research, specifically employing the Keypoint R-
CNN with Feature Pyramid Network (FPN) architecture.
The backbone network was ResNeXt-101 (32x8d), initial-
ized with pre-trained ImageNet weights (X-101-32x8d.pkl).
Training was conducted for a total of 30,000 iterations. The
learning rate was scheduled to decay at 15,000 and 25,000
iterations. Stochastic Gradient Descent (SGD) was used as
the optimizer, following the default configuration in De-
tectron.” The model configuration was based on the “Base-
Keypoint-RCNN-FPN.yaml” file with custom modifications
to specific parameters. Input image size was fixed at 1024
pixels. To enhance generalization and increase dataset di-
versity, various data augmentation techniques such as ran-
dom rotation, brightness adjustment, and saturation modi-
fication were applied. The architecture of the final model is
presented in Fig. 1. The experiments were conducted on a
workstation equipped with Ubuntu 22.04, an AMD Ryzen
Threadripper PRO 965WX CPU (24 cores, 48 threads), 256
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Fig. 1. Overview of the Detectron? architecture. It consists of a backbone network (e.g., ResNeXt), a feature pyramid network (FPN) for multi-scale feature extraction, and
keypoint detection heads tailored for X-ray image analysis.
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GB RAM, and dual NVIDIA GeForce RTX 4090 GPUs.

4, Testing

A test set was composed of whole spine lateral X-rays
from 50 separate patients who were not included in the
training or validation datasets. Two orthopedic surgeons
with over 10 years of clinical experience—orthopedic sur-
geon 1 (S.-B. L.) and orthopedic surgeon 2 (D.-S. C.)—inde-
pendently annotated the LL keypoints on these images. The
LL values measured from these annotations were compared

and analyzed against those measured by the AI model.

5. Statistical Analysis
Intraclass correlation coefficient (ICC) was calculated to

assess the reliability and agreement between measurements

Table 1. Datasets and patient demographics

obtained by different raters and the AI model. The strength
of correlation between the measurements was evaluated us-
ing Pearson’s correlation coefficient. Additionally, Bland-
Altman analysis was performed to assess the agreement and
systematic bias between the AI model and human raters,
as well as to identify the limits of agreement. All statistical
analyses were conducted using the latest version of IBM
SPSS Statistics (version 29), and a p-value of less than 0.05
was considered statistically significant.

Results

The training set consisted of whole-spine lateral X-ray
images from 740 individuals. The validation set included

images from 98 individuals, and the test set comprised 50

Training set

Validation set Test set

X-ray images, n 740
Age, mean+SD years (range) 48.24+25.36 (3—89)

Sex ratio, male:female 0.488:0.512

98 50
48.11+25.76 (7-83) 48.7+24.78 (8-86)

0.459:0.541 0.440:0.560

SD: standard deviation.

Fig. 2. Representative whole-spine lateral X-ray images for lumbar lordosis angle measurement comparison. (A) Original X-ray image. (B) Al-
predicted spinal contour. (C) Angle measurement lines based on Al-detected keypoints. (D) Angle measured manually by orthopedic surgeon 1. (E)
Angle measured manually by orthopedic surgeon 2.
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individuals (Table 1). Representative images comparing an-
gle measurements between the Al and orthopedic surgeons
1 and 2 are shown in Fig. 2.

The model’s performance was evaluated using 50 images
from the test dataset. The mean Average Precision (mAP)
was measured for both bounding boxes and keypoints. (A)
represents the mAP for bounding boxes, with a best score
of 75.78. (B) shows the keypoint mAP, calculated based on
Object Keypoint Similarity (OKS), achieving a best mAP of
92.63 (Fig. 3).

The ICC between orthopedic surgeon 1 and the AT model
was 0.918, and between orthopedic surgeon 2 and the Al
model was 0.949. When comparing all three—orthopedic
surgeon 1, orthopedic surgeon 2, and the AI model—the
ICC was 0.962.

Correlation analysis revealed a strong positive correlation
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between the AI model and orthopedic surgeon 1, with a
Pearson correlation coefficient of r=0.849. Similarly, a high
degree of agreement was observed between the AI model
and orthopedic surgeon 2, with r=0.903. In both scatter-
plots, data points were clustered near the identity line (y=x)
(Fig. 4).

The Bland-Altman analysis demonstrated that, compared
to orthopedic surgeon 1, the AI exhibited a mean bias of
-3.42°, with 95% limits of agreement ranging from -16° to
+9°. In comparison to orthopedic surgeon 2, the AI showed
a mean bias of -4.28°, with 95% limits of agreement from
~14° to +5.8° (Fig. 5).

Discussion

In this study, we developed and validated an AI-based
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Fig. 3. Mean Average Precision (mAP) for both bounding boxes and keypoints. (A) The mAP for bounding boxes achieved a best score of 75.78. (B)
The keypoint mAP, calculated based on Object Keypoint Similarity (OKS), achieved a best score of 92.63.
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Fig. 4. Scatterplots comparing Al-inferred and manually measured lumbar lordosis angles. (A) Al vs. Orthopedic surgeon 1 (identity line: y=x; r=0.849,
p<0.001). (B) Al vs. Orthopedic surgeon 2 (identity line: y=x; r=0.903, p<0.001).



JOURNAL OF ADVANCED SPINE SURGERY
_____________________________________________________________________________________________________________________|

Dr_(1) vs Al Bland-Altman

154
+1.96 SD: 9
104 .
E\ 57 . LD °
=N d .
< 0' e L/
% . . D o % °, mean diff:
S 5 o o ° 3.42
o . ®e
2 . o® . J
=101 A
-154 - W °
-1.96 SD: -16
-20
A 20 30 40 50 60 70

Average of measurements

Dr_(2) vs Al Bland-Altman

107 +1.966D: 5.8
= 5' ®
=l
| . . °
S 01 : : L
% .. o e « 3 ‘s mean diff:
e -5+ R . . % 4.28
5 o o . .
2 o .
.10 s . .
15 .-t I e 5
-1.96 SD: -14
B 20 30 40 50 60 70

Average of measurements

Fig. 5. Bland—Altman plots comparing Al-inferred and manually measured lumbar lordosis angles. (A) Al vs. Orthopedic surgeon 1 (mean bias:
—3.42°; 95% limits of agreement: —16° to +9°). (B) Al vs. Orthopedic surgeon 2 (mean bias: —4.28°; 95% limits of agreement: —14° to +5.8°).

model for automatic measurement of LL from lateral spinal
radiographs. Our model demonstrated high agreement with
expert manual measurements, aligning with existing litera-
ture on Al applications in spinal alignment analysis. Given
the clinical importance of LL in assessing spinal biomechan-
ics and guiding surgical planning, the ability to automate
this measurement with precision presents significant value,
particularly in high-volume clinical settings where efficien-
cy and consistency are critical. Furthermore, integration
with PACS in clinical practice would enable the provision of
immediate visual data to patients and facilitate the explana-
tion of their spinal health conditions.

Previous studies have demonstrated the feasibility of us-
ing AT models to estimate a variety of spinal and pelvic
parameters. For example, Harake et al.” proposed Spine-
Pose, a deep learning model trained on over 700 lateral ra-
diographs, capable of simultaneously estimating LL, pelvic
incidence (PI), sacral slope (SS), and pelvic tilt (PT). Their
model achieved ICCs of 0.91 to 1.00, suggesting excellent
reliability across multiple parameters. In addition, a study by
Lochel et al.” employed a deep learning algorithm on adult
spinal deformity patients to measure sagittal alignment pa-
rameters, reporting ICCs between 0.71 and 0.99 across LL,
PI, SS, and PT, including postoperative radiographs. This
highlights the clinical robustness of AI models even under
the variable anatomical presentations found in deformity or
post-surgical populations. A recent meta-analysis further
consolidates the reliability of AI models in spinopelvic mea-
surement, reporting pooled mean absolute errors of 3.6° for
LL, 4.1° for P, and 1.9° for PT, with ICCs consistently above

0.80.” These findings are consistent with the performance
of our model and suggest that AI-based measurements can
reach or even surpass human-level consistency, particularly
in standardized imaging conditions.

The results of our study demonstrate that the AI model
achieves excellent agreement with human raters in measur-
ing LL, as evidenced by ICCs exceeding 0.90 across all com-
parisons—between orthopedic surgeon 1 and the Al ortho-
pedic surgeon 2 and the Al and the combined orthopedic
surgeons and the Al—according to the classification criteria
proposed by Fleiss'” and Cicchetti & Sparrow."” Addition-
ally, Pearson correlation coefficients revealed strong positive
linear relationships (r=0.849 and r=0.903 for orthopedic
surgeon 1 and 2, respectively), with data points closely
aligned along the identity line, indicating that the AI closely
replicates the measurement tendencies of human experts.
However, Bland-Altman analysis revealed a slight system-
atic underestimation bias by the AI of approximately 3-4°,
with limits of agreement extending up to -16°, suggesting
that although the model exhibits strong overall concor-
dance, further calibration and validation are warranted to
minimize potential outliers and enhance clinical reliability.

Several limitations should be acknowledged. First, the
generalizability of Al models remains limited by the compo-
sition of the training dataset. Factors such as imaging mo-
dality, patient positioning, skeletal maturity, and pathology-
specific variation may affect performance. Additionally,
while current AT models perform well in detecting pre-de-
fined anatomical landmarks, their interpretability remains

limited, which may pose challenges in clinical integration
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and medico-legal contexts. Importantly, the systematic
underestimation of 3-4° by the AI model is not negligible
for surgical planning, as even small deviations in lumbar
lordosis angle can influence decisions regarding corrective
procedures. The authors should further discuss the clinical
implications of this measurement bias, particularly in con-
texts requiring precise angle restoration. To address these
limitations, future work should focus on building a more di-
verse and expansive multicenter dataset that includes vari-
ous anatomical and pathological presentations. Moreover,
exploring and training more advanced model architectures
with improved capacity to capture complex anatomical
variations may help reduce bias and enhance accuracy. In
parallel, developing interpretable AI frameworks that can
provide not only predictions but also uncertainty estimates
and visual rationales will be essential for reliable clinical in-
tegration.

In conclusion, our findings contribute to the growing
evidence that AI can reliably and efficiently measure spinal
alignment parameters, including LL. Integration of these
models into clinical workflows has the potential to reduce
interobserver variability, streamline diagnostic processes,
and facilitate large-scale spinal screening or surgical plan-
ning. Continued validation in heterogeneous clinical popu-
lations and real-world environments is essential to fully

realize the potential of Al-assisted spinal analytics.
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